[ Características generales
Consideramos que una variable x puede adquirir los valores
![a, b, c, d, ... a, b, c, d, ...](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_tvolhkj_dHhESA77kC-ZSU_gBdDy90c-F8SJc3LzGwdS1xWRpJoWgiyHfjGSGDwhkIOgLahOoKfceBhzDwcY9x34ZCYtmC84qS5Ev6lv9tfOcari6tSNIilWedxEf-XfZE2Nl3_gs0RkmGZ2GyG7Tkj5gx=s0-d)
y otra variable y los valores
![x x](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_uJ70gE4LBQrZfw27ZwvoZjvy2jrar0p0gR6U3d55fdOA5I2F5cW3DwJMJtRKXZu0We00W3dRGbTshd8qaWO30clChwJzUD5lP4pXYrFtYcrJWoNaUeu39VAHPvi1hFlcjyiFreIBt6kq7C4URNZOY6qv87=s0-d)
e
![y y](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_stRihH-Oqegm4IKIuV3SrwBqg2WLfS_I5RJ2B9hHtjuGaTqNJg0RLMT4hslaFmBjolXiC4YBcPo_10BXu3NZrIVWhUtK1nTmyIlmIAx6_nhpNL9ze58eE56hTDNoEhMJXpOqurixgeJduUF_WEwfE2ZN6f=s0-d)
son inversamente proporcionales si
Teorema de Euclides
El teorema de Euclides tiene dos enunciados que se conocen como teorema de la altura y teorema del cateto.
Teorema de la altura:”la altura
![h h](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_sBuAx-MrplT2W79RMO2DI2kVW6AIvCDl8fzU8idbB-vnyP-bo9lok7YLWn7MwdVAjtwtOAK1n8H_sTvfkL2S3OET5FhXPpzO1-6irV7TcC1Qp9bcanMYrT14vpEzU0YDj-AW84i0wrxTViGk2FdNt0g5k2=s0-d)
de un triángulo rectángulo con respecto a su hipotenusa es la media proporcional de los dos segmentos,
![m m](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_tmPR2R23puwYC0pOJAfmiqx9Em4kR5k6Tn9QdbrvYj3Hv55BfzK0qs57hOsLhLG7nY-Hc7vJjkrG4L-JgcNpj9rzcD5aTLj684rhTJKw6qidmzAoHce5And8LncqkGnbxVCLM9AjYMp8GRb-w1N851hThA=s0-d)
y
![n n](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_uRVmZRGfadtgWc8X4uuOfdA4EA5H32jWpDL4NfDZ4VFIb8faNeL3cLLw89jnPe0Pxqk33BfDxN1BMooGZ6KyZk1mXHnE60UAkjYvT5wrer7Kvt8J7JXg5ENBd_iFQ82dGLcEQfqqVt0xYNVUxg6eTXNbBs=s0-d)
, que el pie de
![h h](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_sBuAx-MrplT2W79RMO2DI2kVW6AIvCDl8fzU8idbB-vnyP-bo9lok7YLWn7MwdVAjtwtOAK1n8H_sTvfkL2S3OET5FhXPpzO1-6irV7TcC1Qp9bcanMYrT14vpEzU0YDj-AW84i0wrxTViGk2FdNt0g5k2=s0-d)
define en la hipotenusa:
Teorema del cateto: “el cateto
![c c](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_vsoULTy1Ab8x04tfdUneIjyBy8Gk7J9dkwPYddIV1QgK9u9Vv_rpwJSqQm2dllu9q8N1ra1lrdA_NpZ4tbkeEDA9GycRpk1OhjCT8PPuXBQmkomn1gPOY6VBSAUb3FbQ9G2hXTVXb3x8qFsxDtcXymAbA=s0-d)
de un triángulo rectángulo es la media proporcional de la hipotenusa
![a a](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_u71HSOn5YUJ8mkNCl64qMn9l9NpUy2dYQ71-2AubJ3l_jcJsvSNzl_VJ8CA0r9ELoteXbFObjixQOrCcKa7vefPhVdwa7-K1F0jvMv_vOLdlsJkifwzUyfrHB6CtWA5nL4yXci9cu5U5jGMOOj_O8i83Ss=s0-d)
y
![c' c'](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_tf74JxArVr-6Ywvnuf0d7V5m4ipIbmD9bfPAgX7guzbVSaIlRjJ8Pjj4ve8-rTK0hJGmciLIHeIraLk3H7fYkXL7uGH3SDgGk8kQcTEoZz_iEkVhGE3QA2a7QAygCZ9aysCIl7EE35z-h-9VTnM-x0Rz_h=s0-d)
, proyección de
![c c](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_vsoULTy1Ab8x04tfdUneIjyBy8Gk7J9dkwPYddIV1QgK9u9Vv_rpwJSqQm2dllu9q8N1ra1lrdA_NpZ4tbkeEDA9GycRpk1OhjCT8PPuXBQmkomn1gPOY6VBSAUb3FbQ9G2hXTVXb3x8qFsxDtcXymAbA=s0-d)
sobre ella:
![c = \sqrt {c' \cdot a} c = \sqrt {c' \cdot a}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_tXWQnBejI62YYqSGyuJN6zSSn12LrpNXxWLxtbkYbLhlddRoj-SS-zDYwEo5asQ5v3b8gNFBYdgqIKrS3rn7vefMmfE8-Jqvd3FPK-sQ3zeR4YVS9W8bC1nrZXm8-VM5vg-MIGEv-A9aB_jJEu12n3zo6f=s0-d)
”
Potencia
Consideramos un punto
![P P](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_viXPqP6-XonkjQYwMxJnMGrQQNvFW4HSR9QwcA1zw70hBnBnNDTIpwQ3NKVq0NFwns80EgD0U4sWdAViMVdF_tiy2JRIWklbuOp5sobtlxbWYW-0Q6edkEVPu94mDqeuE0dWRoeN9N3yWPsOktvWskmrE=s0-d)
y una circunferencia
![c c](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_vsoULTy1Ab8x04tfdUneIjyBy8Gk7J9dkwPYddIV1QgK9u9Vv_rpwJSqQm2dllu9q8N1ra1lrdA_NpZ4tbkeEDA9GycRpk1OhjCT8PPuXBQmkomn1gPOY6VBSAUb3FbQ9G2hXTVXb3x8qFsxDtcXymAbA=s0-d)
, de centro
![C C](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_sEhb-hKnh-nxCmSVi1n8WnTHk073nig42mysAZAwCJyZ_ffZadcZNslFDz5NJMzaOpMe8JBqG7nR02t7tJ0QJ_OVthw7XPxeoHUIitVbnlZv0PlSrmUNai2J_nsH9GwSk4p1YUhoyIemSvsIG4KW0j2n7p=s0-d)
. Trazamos rectas secantes a
![c c](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_vsoULTy1Ab8x04tfdUneIjyBy8Gk7J9dkwPYddIV1QgK9u9Vv_rpwJSqQm2dllu9q8N1ra1lrdA_NpZ4tbkeEDA9GycRpk1OhjCT8PPuXBQmkomn1gPOY6VBSAUb3FbQ9G2hXTVXb3x8qFsxDtcXymAbA=s0-d)
que pasen por
![P P](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_viXPqP6-XonkjQYwMxJnMGrQQNvFW4HSR9QwcA1zw70hBnBnNDTIpwQ3NKVq0NFwns80EgD0U4sWdAViMVdF_tiy2JRIWklbuOp5sobtlxbWYW-0Q6edkEVPu94mDqeuE0dWRoeN9N3yWPsOktvWskmrE=s0-d)
. Estas rectas definen en
![c c](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_vsoULTy1Ab8x04tfdUneIjyBy8Gk7J9dkwPYddIV1QgK9u9Vv_rpwJSqQm2dllu9q8N1ra1lrdA_NpZ4tbkeEDA9GycRpk1OhjCT8PPuXBQmkomn1gPOY6VBSAUb3FbQ9G2hXTVXb3x8qFsxDtcXymAbA=s0-d)
los puntos
![A, B, D, E, F, G A, B, D, E, F, G](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_vGRN2j-BKAMgJd-Q7lB4zA9NKc7SwKbTlZdzY0_zSs-PbHu-dCdutfJCywdOf04HBvKE_zTDNzZpfYkDQ5EC4U1w8Zj6Ouum-9q1B3S2WE_Lwk_c9xMfwngCnGqnQyLeyDuG2cDsNuM7KASfbUvKrBllU=s0-d)
. Se llama potencia del punto
![P P](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_viXPqP6-XonkjQYwMxJnMGrQQNvFW4HSR9QwcA1zw70hBnBnNDTIpwQ3NKVq0NFwns80EgD0U4sWdAViMVdF_tiy2JRIWklbuOp5sobtlxbWYW-0Q6edkEVPu94mDqeuE0dWRoeN9N3yWPsOktvWskmrE=s0-d)
respecto de la circunferencia
![c c](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_vsoULTy1Ab8x04tfdUneIjyBy8Gk7J9dkwPYddIV1QgK9u9Vv_rpwJSqQm2dllu9q8N1ra1lrdA_NpZ4tbkeEDA9GycRpk1OhjCT8PPuXBQmkomn1gPOY6VBSAUb3FbQ9G2hXTVXb3x8qFsxDtcXymAbA=s0-d)
y se nota
![Pot_{Pc} Pot_{Pc}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_scmah45PZSMPgtudQX3g0aipK3Hgnoz0tHLN8BEV6LMugnSnk3zHZqUXR2mh9qVbrOURo-PE46GwGwkZMwGxVOApiM_9JBZilcHo5r4Bj8wXaakjq3qpw3ijnAsRWIIWHv0zC6I-yFTMPhO4MWkDH3pYwp=s0-d)
al producto:
La potencia es un caso de proporcionalidad inversa.